
Information Sciences 513 (2020) 581–599 

Contents lists available at ScienceDirect 

Information Sciences 

journal homepage: www.elsevier.com/locate/ins 

Robust principal component analysis: A factorization-based 

approach with linear complexity 

Chong Peng 

a , Yongyong Chen 

b , Zhao Kang 

c , Chenglizhao Chen 

a , ∗, 
Qiang Cheng 

d , e 

a College of Computer Science and Technology, Qingdao University, China 
b Department of Computer and Information Science, University of Macau, China 
c School of Computer Science and Engineering, University of Electronic Science and Technology of China, China 
d Department of Computer Science, University of Kentucky, USA 
e Institute of Biomedical Informatics, University of Kentucky, USA 

a r t i c l e i n f o 

Article history: 

Received 14 April 2019 

Revised 27 September 2019 

Accepted 29 September 2019 

Available online 30 September 2019 

Keywords: 

Robust principal component analysis 

Factorization 

Linear complexity 

a b s t r a c t 

Low-rankness has been widely observed in real world data and there is often a need to 

recover low-rank matrices in many machine learning and data mining problems. Robust 

principal component analysis (RPCA) has been used for such problems by separating the 

data into a low-rank and a sparse part. The convex approach to RPCA has been well stud- 

ied due to its elegant properties in theory and many extensions have been developed. 

However, the state-of-the-art algorithms for the convex approach and their extensions are 

usually expensive in complexity due to the need for solving singular value decomposition 

(SVD) of large matrices. In this paper, we propose a novel RPCA model based on matrix tri- 

factorization, which only needs the computation of SVDs for very small matrices. Thus, this 

approach reduces the complexity of RPCA to be linear and makes it fully scalable. It also 

overcomes the drawback of the state-of-the-art scalable approach such as AltProj, which 

requires the precise knowledge of the true rank of the low-rank component. As a result, 

our method is about 4 times faster than AltProj. Our method can be used as a light-weight, 

scalable tool for RPCA in the absence of the precise value of the true rank. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Principal component analysis (PCA) is one of the most widely used unsupervised learning method for dimension re-

duction. It is often used as a pre-processing or intermediate step for data analysis in various applications, such as face

recognition, classification, recommender systems design, etc. Given a data matrix X ∈ R 

d×n , the basic idea of PCA is to find

a low-dimensional subspace where the dataset lies such that the most variability of the data is retained. Mathematically,

the classic PCA seeks the orthogonal basis vectors by solving the minimization problem of min P P T = I k ‖ X − P P T X‖ 2 F , where I k

is an identity matrix of size k × k and ‖·‖ F is the Frobenius norm. A straightforward solution to PCA is obtained via singular

value decomposition (SVD), which gives the best rank- k approximation of the data. It is well known that PCA is sensitive to

outliers due to the use of the Frobenius norm. However, in many cases, modern datasets are noisy due to various reasons

at data collection stage such as sensor failures, which brings challenges to the classic PCA. 
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Various approaches to robust PCA (RPCA) have been proposed to combat the above mentioned drawback, including al-

ternating minimization [1] , random sampling techniques [2,3] , multivariate trimming [4] , and others [5,6] , among which a

new type of RPCA method has emerged and drawn significant attentions [7,8] . It assumes that X can be separated into two

parts: a low-rank L and a sparse S , where the separation can be obtained by solving the following problem: 

min 

L,S 
rank (L ) + λ‖ S‖ 0 , s.t. X = L + S, (1) 

where ‖·‖ 0 is the � 0 (pseudo) norm which counts the number of nonzero elements of a matrix, and λ> 0 is a balancing

parameter. Because it is generally NP-hard to minimize the rank or the � 0 norm, in practice, (1) is often relaxed to the

following convex optimization problem [8] : 

min 

L,S 
‖ L ‖ ∗ + λ‖ S‖ 1 , s.t. X = L + S, (2)

where ‖ L ‖ ∗ = 

∑ min (d,n ) 
i =1 

σi (L ) is the nuclear norm of L with σ i ( L ) denoting the i -th largest singular value of L , and ‖ S‖ 1 =∑ 

i j | S i j | is the � 1 norm. It has been revealed that (2) can exactly separate L with the true rank r from S under some mild

conditions with overwhelming probability [8] . A number of algorithms have been developed to solve (2) , including singular

value thresholding (SVT) [9] , accelerated proximal gradient (APG) [10] , and two versions of augmented Lagrange multipliers

(ALM) based approaches [11] : exact ALM and inexact ALM (IALM). Among these algorithms, the ALM based are state-of-

the-art ones for solving (2) , which need to compute SVDs of d × n matrices per iteration. To improve efficiency, another

ALM based algorithm adopts PROPACK package [12] , which solves only partial instead of full SVDs. However, this is still

computationally expensive when d and n are both large. Despite the elegant theory of the convex RPCA formulation of (2) ,

it has three major drawbacks: 1) When the assumed underlying low-rank matrix has no incoherence guarantee [8] , or the

data get grossly corrupted, the results can be far from the true underlying ones; 2) The nuclear norm may lead to a biased

estimation of the rank [13] ; 3) It has high complexity in computation. To combat these drawbacks, [13] uses a nonconvex

rank approximation to more accurately approximate the rank of L . However, it still needs to solve full SVDs. Methods such

as [14,15] need only to solve partial SVDs, which significantly reduces the complexity compared to the computation of full

SVD; for example, AltProj has a complexity of O ( r 2 dn ) [15] . However, if r is not known a priori , [14,15] may fail to recover L

correctly. 

To further reduce the complexity, enhance the scalability and alleviate the dependence on the knowledge of r , in this

paper, we propose a factorization-based model for RPCA. With the factorization approach, we assume that L can be de-

composed as UCV 

T with U ∈ R 

d×k , C ∈ R 

k ×k , V ∈ R 

n ×k , and k � min ( d , n ). This model relaxes the requirement on a priori

knowledge of the rank of L , which only assumes that it is upper bounded by k . With this special structure, scalable algo-

rithms can be developed to optimize our model efficiently. Briefly, we summarize the key contributions of this paper as

follows: 

• We propose a factorization-based model for RPCA, allowing the recovery of the low-rank component with or without a

priori knowledge of its true rank r . 

• Efficient and scalable ALM-type optimization algorithms are developed with theoretical convergence guarantees. More- 

over, it can be formally proven that our model is equivalent to the classic, convex formulation of RPCA under certain mild

conditions (as specified in Theorem 1 ); hence, theoretical properties of the convex approach can extend to our model. 

• Empirically, extensive experiments confirm the effectiveness of our algorithms both quantitatively and qualitatively in 

various applications. 

We organize the rest of this paper as follows. We briefly review related work in Section 2 . Then we present the proposed

models in Section 3 . The optimization algorithms for two variants of our model are developed in Section 4 . Then we the-

oretically analyze the convergence of the proposed algorithms in Section 5 . We conduct extensive experiments to evaluate

the proposed algorithms in Section 6 . Finally, we conclude our paper in Section 7 . 

2. Related work 

The approach to RPCA in (1) has received considerable attention and its convex relaxation (2) has been thoroughly stud-

ied [9] . To exploit the example-wise sparsity of the sparse component, the � 2,1 norm has been adopted to replace the � 1 
norm in (2) [16,17] : 

min 

Z,S 
‖ L ‖ ∗ + λ‖ S‖ 2 , 1 , s.t. X = L + S, (3)

where ‖·‖ 2,1 is defined to be the sum of � 2 norms of column vectors of a matrix, which promotes column-wise sparsity.

When a matrix has large singular values, the nuclear norm may be far from an accurate approximation of the rank. To com-

bat this issue, nonconvex rank approximations have been considered in RPCA as well as other applications, such as subspace

clustering, faster numerical linear algebra, and matrix completion [13,18–20] . For example, [13] developed a nonconvex RPCA

model with nonconvex rank appproximation: 

min 

L,S 
‖ L ‖ γ + λ‖ S‖ 2 , 1 , s.t. X = L + S, (4)
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where ‖ L ‖ γ = 

∑ 

i 
(1+ γ ) σi (L ) 
γ + σi (L ) 

is a rank approximation with γ > 0. As a common requirement, the above approaches usually

need to solve SVDs. When the matrix is large, the computation of SVD, in general, is intensive. To reduce the complexity

of RPCA, several approaches have been attempted. For example, nonconvex alternating minimization techniques have been

used in RPCA [15] . As previously mentioned, the resulting algorithm AltProj has a cost of O ( r 2 dn ) per iteration which is

comparable to PCA when r is small. It involves finding the rank- r approximation of d × n matrices, where r is the true

rank of L . Another approach, fixed-rank RPCA (FrALM) [14] , also assumes the availability of this prior knowledge with the

following formulation: 

min 

L,S 
‖ S‖ F s.t. X = L + S, rank (L ) = r. (5)

The above optimization problem is solved by adopting the exact ALM. Another approach such as [21] assumes the pair-wise

similarity of the data to recover low-rank part, which achieves fast computation with the Sherman–Morrison–Woodbury

formula. The above approaches all exploit the prior knowledge on the rank of the low-rank component to reduce the com-

putation of full SVDs to that of partial SVDs. 

3. Fast Factorization-based RPCA 

In this section, we formulate the F ast F actorization-based R P CA model (FFP). Depending on whether the information on

the true rank r is present or not, two variants of our model and their corresponding optimization algorithms are developed.

The proposed models and algorithms are shown to be closely related to the convex RPCA model (2) . 

3.1. Formulation 

Motivated by the convex RPCA approach, we model the data as X = L + S, where L is the low-rank part and can be

decomposed as L = UCV T with U ∈ R 

d×k , C ∈ R 

k ×k , and V ∈ R 

n ×k . The decomposition UCV 

T effectively provides a natural

upper bound for the rank of L , which is k . The upper bound k can be used to relax the stringent requirement on the

knowledge of the true rank by AltProj algorithm. In this paper, we adopt the � 1 norm to recover the sparse part S due to

the following reasons: 1) As will be clearer in later sections, our method is closely related with the classic convex RPCA of

(2) . Thus, the � 1 norm-based objective function ensures that the elegant theoretical results are applicable to our method;

2) The � 1 norm is easy to solve and theoretical convergence can be guaranteed; 3) It is not within the scope of this paper

to try out various norms for the sparse term. Thus, with � 1 norm, we propose the following factorization-based objective

function: 

min 

S,U,C,V 
‖ S‖ 1 , s.t. X = UCV 

T + S. (6)

It is seen that (6) is nonconvex and its solution can change with scaling factors multiplied on the factor matrices U , V , and

C . To facilitate the uniqueness of the solution, we enforce two constraints U 

T U = I k and V T V = I k in the above model. Then

these constraints naturally lead to an interpretation: the left factor matrix U can be regarded as basis vectors of the column-

subspace in which L resides, while the right factor matrix V can be regarded as the relaxed indicator matrix that indicates

which subspaces the columns of L belong to. This interpretation also implies that C can be regarded as a core matrix of

the data that retains the essential information since U and V are required to be orthonormal. We incorporate this structural

requirement into (6) , leading to the following model: 

min 

S,U,C,V 
‖ S‖ 1 s.t. X = U CV 

T + S, U 

T U = I , V 

T V = I . (7)

Up to now, we have considered the case where the precise knowledge of r is known, where we naturally let k = r in (7) .

However, in the absense of such information on r , an arbitrary value that is far from r may be picked for k . Hence, (7) may

lack the desired capability of recovering L with an (unknown) rank of r when an arbitrary k is used. To resolve this problem,

we propose to combine the advantages of the convex RPCA and the proposed factorization-based fixed-rank approach, which

leads to the following optimization problem: 

min 

S,U,C,V 
‖ S‖ 1 + λ‖ UCV 

T ‖ ∗

s.t. X = U CV 

T + S, U 

T U = I , V 

T V = I , 
(8)

where λ> 0 is a trade-off parameter that balances the two terms in (8) . Frequently, with specific domain information, a

proper upper bound k � min ( d , n ) can be chosen. k � min ( d , n ) is meaningful in that it provides a close rather than arbi-

trary upper bound for the true rank, thus yielding more accurate recovery. Moreover, smaller k reduces the complexity and

renders more efficient computation, which is essential for real world applications. Even in the case that the precise value

of r or clear domain information is not available, a proper k ≥ r can still be chosen. Because, in the worst case, we may

let k = min (d, n ) , such that k ≥ r always hold. It should be noted that there exists a close connection between (8) and the

convex RPCA, which is revealed by the following theorem. 

Theorem 1. Given a proper λ that exactly recovers L and S for convex RPCA of (2) with the true rank r ≤ k ≤ min ( d , n ) . It is

always possible to obtain a global minimizer for the nonconvex problem (8) . 
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Fig. 1. Example of approximations with two singular values: (a) the nuclear norm approximation; (b) the first-order log-determinant rank approximation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof. For ease of notation, we define the objectives in (2) and (8) to be f ( L , S ) and g ( U , C , V , S ), respectively. It is seen that

f ( L , S ) is convex and thus there exists a global minimizer which we denote as { L ∗, S ∗}. Hence, for any { L , S }, we have f ( L ,

S ) ≥ f ( L ∗, S ∗). 

For any solution of (8) , namely { U 

′ , C ′ , V 

′ , S ′ }, we can define L ′ = U 

′ C ′ V ′ T . It is straightforward to see that { L ′ , S ′ } is a

feasible point of (2) since the constraint L ′ + S ′ = U 

′ C ′ V ′ T + S ′ = X is satisfied. Hence, for any solution { U 

′ , C ′ , V 

′ , S ′ } of (8) ,

the corresponding objective value g ( U 

′ , C ′ , V 

′ , S ′ ) is lower-bounded and we have g(U 

′ , C ′ , V ′ , S ′ ) = f (L ′ , S ′ ) ≥ f (L ∗, S ∗) . 
For { L ∗, S ∗}, it is straightforward to decompose L ∗ in the following way. Let L ∗ = U�L ∗V T be the thin SVD of L ∗ with

U ∈ R 

d×n , �L ∗ ∈ R 

n ×n , V ∈ R 

n ×n , and U T U = V T V = I n . Since the rank of L ∗ is r ≤ k ≤ min ( d , n ), we can write L ∗ as 

L ∗ = 

[
U 1 U 2 U 3 

]⎡ 

⎣ 

�L ∗
1 

�L ∗
2 

�L ∗
3 

⎤ 

⎦ 

⎡ 

⎣ 

V T 1 

V T 2 

V T 3 

⎤ 

⎦ = 

[
U 1 U 2 

][�L ∗
1 

�L ∗
2 

][
V T 1 

V T 2 

]
= U 12 �L ∗

12 
V T 12 , 

where U 12 = 

[
U 1 U 2 

]
, �L ∗

12 
= [ 

�L ∗
1 

�L ∗
2 

] , V 12 = 

[
V 1 V 2 

]
, �L ∗

1 
∈ R 

r×r , and �L ∗
2 

∈ R 

(k −r) ×(k −r) , �L ∗
3 

∈ R 

(n −k ) ×(n −k ) are

zero matrices. Here, the second equality holds due to the fact that �L ∗
3 

is a zero matrix. 

Define U 0 , V 0 to be unitary matrices such that U T 
0 
U 0 = U 0 U T 0 

= V T 
0 
V 0 = V 0 V T 0 

= I k . Then it is seen that 

L ∗ = U 12 �L ∗
12 
V T 12 = U 12 U 0 U 

T 
0 �L ∗

12 
V 0 V T 0 V T 12 = (U 12 U 0 )(U 

T 
0 �L ∗

12 
V 0 )(V 12 V 0 ) T . 

Define U 

∗ = U 12 U 0 , V ∗ = V 12 V 0 , and C ∗ = U T 
0 
�L ∗

12 
V 0 , then it is straightforward to see that g(U 

∗, C ∗, V ∗, S ∗) = f (L ∗, S ∗) ,
whereas the constraints L ∗ + S ∗ = U 

∗C ∗(V ∗) T + S ∗ = X, (U 

∗) T U 

∗ = U T 0 U 
T 
12 U 12 U 0 = I k , and (V ∗) T V ∗ = V T 0 V 

T 
12 V 12 V 0 = I k are sat-

isfied. Hence { U 

∗, C ∗, V 

∗, S ∗} is a global minimizer of (8) . �

Theorem 1 reveals the close connection between the convex RPCA and (8) , where it provides a way to solve (8) . However,

the provided solution is expensive to obtain and more efficient optimization strategy is desirable. In this paper, we will focus

on designing a scalable algorithm for RPCA with a provable convergence certificate. 

It is noted that (8) incorporates the nuclear norm to approximate the rank function, which has been widely adopted in

low-rank learning problems [22–29] . However, recent studies show that the nuclear norm is not accurate in approximating

the true rank of a matrix, while more accurate nonconvex rank approximations may help improve learning performance

[20] . Here, we adopt the typical log-determinant rank approximation, ‖ Y ‖ ld , which is defined as: 

‖ Y ‖ ld = log det (I + (Y T Y ) 
1 
2 ) = 

min (d,n ) ∑ 

i =1 

log (1 + σi (Y )) . 

To visually understand how the new rank approximation approximates the true rank function, we show a simple yet con-

vincing example in Fig. 1 . It is seen that the nuclear norm is far larger than the true rank if there are large singular values

while the log-determinant rank approximation significantly improves the behavior. It is easy to check that the following

properties hold, which will be used in later sections: 

• Since σ i ( Y ) ≥ 0, log (1 + σi (Y )) ≥ 0 . Thus ‖ Y ‖ ld ≥ 0 always holds. 

• For large σ i ( Y ), we have log (1 + σi (Y )) � σi (Y ) . This reveals that rank( Y ) < ‖ Y ‖ ld �‖ Y ‖ ∗ , implying closer approximation

to the true rank. 

• ‖ Y ‖ ld is nonconvex, continuous, and differentiable. 

Such properties allow the nonconvex rank approximation to better approximate the true rank function. Moreover, the

problem is easy to solve and it will be seen that the convergence can be readily guaranteed by using the log-determinant
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rank approximation. Thus, to exploit the desirable properties and without loss of generality, we adopt the log-determinant

rank approximation in the RPCA and obtain the following model: 

min 

S,U,C,V 
‖ S‖ 1 + λ‖ UCV 

T ‖ ld 

s.t. X = U CV 

T + S, U 

T U = I , V 

T V = I . 
(9)

It is seen that model (9) can be reduced to the following model: 

min 

S,C,U,V 
‖ S‖ 1 + λ‖ C‖ ld 

s.t. X = U CV 

T + S, U 

T U = I , V 

T V = I . 
(10)

The equivalence is formally given in the following theorem. 

Theorem 2. Models (9) and (10) are equivalent. 

Proof. To prove the theorem, we only need to show that ‖ UC V T ‖ ld = ‖ C ‖ ld . 
Let C = U�C V T be the SVD of C . Then it is seen that (U U ) T (U U ) = I k and (V V) T (V V) = I k . Hence, (UU )�C (V V) T is the

SVD of UCV 

T . Thus UCV 

T and C have identical singular values. By the definition of the log-determinant rank approximation

function, it is straightforward that ‖ UC V T ‖ ld = ‖ C ‖ ld . �

Up to now, we have proposed two models, including (7) and (10) for the cases where the knowledge of the precise true

rank r is present or not, respectively. Accordingly, we name models (7) and (10) F ixed Rank FFP (F-FFP) and U nfixed Rank

FFP (U-FFP). For the optimization, theoretical analysis, and experimental evaluation, we will present them in the following

sections. 

4. Optimization 

In this section, we aim at developing the ALM-type algorithms for optimization of models (7) and (10) , which will be

separately discussed in the rest of this section. 

4.1. Optimization of (7) 

The augmented Lagrange function of (7) is 

min 

S,U,C,V 
‖ S‖ 1 + 

ρ
2 
‖ X − UCV 

T − S + 

1 
ρ �‖ 

2 
F 

s.t. U 

T U = I, V 

T V = I. 
(11)

We will develop an alternating minimization strategy to iteratively optimize each variable while keeping all the others fixed.

The detailed optimization strategy is presented as follows. 

4.1.1. Optimization w.r.t. S 

The subproblem of S is 

min 

S 
‖ S‖ 1 + 

ρ

2 

‖ X − UCV 

T + 

1 

ρ
� − S‖ 

2 
F , (12)

which can be efficiently solved with the shrinkage-thresholding operator provided in [30,31] . Denote D = X − UCV T + 

1 
ρ �,

then the optimal S is given element-wisely as 

[ S] i j = (| D i j − 1 /ρ| ) sgn (D i j ) , (13)

where sgn( ·) returns the sign of the input. 

4.1.2. Optimization w.r.t. V 

Denote M = X − S + 

1 
ρ �, then V is to be optimized with the following problem: 

min 

V T V = I 
‖ M 

T U − V ‖ 

2 
F (14)

which is the classical Orthogonal Procrustes problem [32] and can be solved using the following lemma: 

Lemma 1. For the optimization problem 

min 

V T V = I 
‖ V − N‖ 

2 
F , (15)
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the optimal V is defined as 

V = P Q 

T , (16) 

where P and Q are the left and right singular vectors of the thin SVD of N. 

Now suppose that N = M 

T UC = P �N Q 

T is the thin SVD of N , then the optimal solution to (14) is 

V = P Q 

T . (17) 

4.1.3. Optimization w.r.t. U 

The sub-problem of optimizing U is 

min 

U T U= I 
‖ M − UV 

T ‖ 

2 
F . (18) 

Similar to the minimization of V in (17) , U is obtained with a closed-form solution 

U = P ′ Q 

′ T , (19) 

where P ′ and Q 

′ are left and right singular vectors of MVC T , respectively. For the ease of notation, we define P(·) and Q (·)
to be left and right singular vectors of the input matrix. Hence, V and U are updated by 

V = P(M 

T UC) Q 

T (M 

T UC) (20) 

U = P(MV C T ) Q 

T (MV C T ) . (21) 

4.1.4. Optimization of C 

The sup-problem of optimizing C is 

min 

C 

ρ

2 

‖ X − UCV 

T − S + 

1 

ρ
�‖ 

2 
F . (22) 

According to the first-order optimality condition, C is updated by 

C = U 

T MV. (23) 

4.1.5. Updating � and ρ
The updating of � and ρ are given as follows with an ALM-type procedure: 

� = � + ρ(X − UCV 

T − S) , 
ρ = ρκ, 

(24) 

where κ > 1 ensures that ρ is increasing. 

4.2. Optimization of (10) 

The augmented Lagrange function of (10) is 

min 

S,U,V 
‖ S‖ 1 + λ‖ C‖ ld + 

ρ
2 
‖ X − UCV 

T − S + 

1 
ρ �‖ 

2 
F 

s.t. U 

T U = I, V 

T V = I. 
(25) 

It is noted that, other than C , the other sub-problems are identical to (11) and thus same updating rules in (16), (13), (19),

(24) apply. In the rest of this subsection, we focus on the optimization of (10) with respect to C . 

The sub-problem for optimizing C is as follows: 

ρ
2 
‖ M − UCV 

T ‖ 

2 
F + λ‖ C‖ ld = 

ρ
2 
‖ U 

T MV − C‖ 

2 
F + λ‖ C‖ ld . (26) 

Similar to the theoretical derivations in [20] , we can solve (26) by the following operator: 

C = D λ
ρ
(U 

T MV ) , (27) 

where for a matrix D , D τ (D ) = P(D ) diag { σ ∗
i 
} (Q (D )) T , with 

σ ∗
i = 

{
ξ , if f i (ξ ) ≤ f i (0) and (1 + σi (D )) 2 > 4 τ , 

0 , otherwise, 
(28) 

where f i (x ) = 

1 
2 (x − σi (D )) 2 + τ log (1 + x ) , and ξ = 

σi (D ) −1 
2 + 

√ 

(1+ σi (D )) 2 

2 − τ . 

Up to now, we have developed optimization procedures for (7), (10) . For clearer representation, we summarize them in

Algorithm 1 . 
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Algorithm 1 F-FFP for Solving (7) (and, U-FFP for Solving (10) ) . 

1: Input : X , k , λ, ρ , κ , t max 

2: Initialize: S 0 , U 0 , V 0 , �0 , ρ0 , and t = 1 . 

3: repeat 

4: Update V t by (20); 

5: Update U t by (21); 

6: For F-FFP, update C t by (23); 

For U-FFP, update C t by (27); 

7: Update S t by (13); 

8: Update � and ρ by (24); 

9: t = t + 1 . 

10: until t ≥ t max or convergence 

11: Output : S t , U t , V t , C t 

 

 

 

 

 

 

 

 

 

 

 

4.3. Complexity analysis 

For F-FFP, the overall complexity for updating S , �, and ρ is O ( dnk ) per iteration. The complexity for updating V and U is

O (dnk + nk 2 ) and O ( dnk ) per iteration, respectively. For U-FFP, the complexity for updating U is O (dk 2 + k 3 ) while the others

are the same as F-FFP. Therefore, the overall complexities of F-FFP and U-FFP are O (dnk + nk 2 ) and O (dnk + nk 2 + dk 2 + k 3 ) ,

respectively. When k � min ( d , n ), the complexity of F-FFP and U-FFP is reduced to O ( dnk ). Hence, the proposed algorithms

have linear complexity in both dimension and sample size, which is promising for real world applications. 

5. Convergence analysis 

In this section, we will provide theoretical analysis to show that U-FFP converges to a stationary point. The proof holds

for F-FFP, where it can be regarded as a special case of U-FFP with λ = 0 . 

Theorem 3. The sequences { S t }, { U t }, { C t }, { V t }, and { �t } are bounded as long as 
∑ ρt+1 

ρ2 
t 

< ∞ and 
∑ 1 

ρt 
< ∞ . 

Proof. In the proof, we will provide the boundedness of each sequence one by one. 

To minimize S at iteration t + 1 , S t+1 needs to satisfy the first-order optimality condition, that is, 

∇ S L (S, U t+1 , C t+1 , V t+1 , �t , ρt ) | S t+1 

= ∇ S ‖ S‖ 1 | S t+1 
+ ρt (S t+1 + U t+1 C t+1 V 

T 
t+1 − X − �t /ρt ) 

= 0 . 

(29)

Note that the updating rule for � is 

�t+1 = �t + ρt (X − S t+1 − U t+1 C t+1 V 

T 
t+1 ) , (30)

hence, ∇ S ‖ S‖ 1 | S t+1 
− �t+1 = 0 . Because ‖ S ‖ 1 is not smooth at some points, we define ∇ S ‖ S‖ 1 | S t+1 

to be its sub-gradient at

point S t+1 in the following: 

[∇ S ‖ S‖ 1 | S t+1 

]
i j 

∈ 

{ 

[ −1 , 1] , if [ S t+1 ] i j = 0 

sgn 

(
[ S t+1 ] i j 

)
, otherwise . 

(31)

It is seen from the above definition that ‖∇ S ‖ S‖ 1 | S t+1 
‖ 2 F ≤ dn . The boundedness of ∇ S ‖ S‖ 1 | S t+1 

implies that �t+1 is also

bounded. Then we may derive the following chain of equations: 

L (S t , U t , C t , V t , �t , ρt ) 

= L (S t , U t , C t , V t , �t−1 , ρt−1 ) + 

ρt 

2 
‖ X − U t C t V 

T 
t − S t + �t /ρt ‖ 

2 
F − ρt−1 

2 
‖ X − U t C t V 

T 
t − S t + �t−1 /ρt−1 ‖ 

2 
F 

= L (S t , U t , C t , V t , �t−1 , ρt−1 ) + 

ρt −ρt−1 

2 
‖ X − U t C t V 

T 
t − S t ‖ 

2 
F + Tr ((�t − �t−1 ) 

T (X − U t C t V 

T 
t − S t )) 

+ 

1 
2 ρt 

‖ �t ‖ 

2 
F − 1 

2 ρt−1 
‖ �t−1 ‖ 

2 
F 

= L (S t , U t , C t , V t , �t−1 , ρt−1 ) + 

ρt + ρt−1 

2 ρ2 ‖ �t − �t−1 ‖ 

2 
F + 

1 
2 ρt 

‖ �t ‖ 

2 
F − 1 

2 ρt−1 
‖ �t−1 ‖ 

2 
F . 

(32)
t−1 
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Here, the last equation is obtained by the updating of �t . By the alternatively optimizating the objective w.r.t V , C , U , and

S , we have 

L (S t+1 , U t+1 , C t+1 , V t+1 , �t , ρt ) ≤ L (S t , U t , C t , V t , �t−1 , ρt−1 ) 

+ 

ρt + ρt−1 

2 ρ2 
t−1 

‖ �t − �t−1 ‖ 

2 
F + 

1 
2 ρt 

‖ �t ‖ 

2 
F − 1 

2 ρt−1 
‖ �t−1 ‖ 

2 
F 

≤ L (S t , U t , C t , V t , �t−1 , ρt−1 ) + 

ρt + ρt−1 

2 ρ2 
t−1 

‖ �t − �t−1 ‖ 

2 
F + 

1 
2 ρt 

‖ �t ‖ 

2 
F . 

(33) 

Iterating the inequality t times in a way similar to (33) , we arrive at: 

L (S t+1 , U t+1 , C t+1 , V t+1 , �t , ρt ) 

≤ L (S 1 , U 1 , C 1 , V 1 , �0 , ρ0 ) + 

∑ t 
i =1 

ρt + ρt−1 

2 ρ2 
t−1 

‖ �t − �t−1 ‖ 

2 
F + 

∑ t 
i =1 

1 
2 ρt 

‖ �t ‖ 

2 
F 

≤ L (S 1 , U 1 , C 1 , V 1 , �0 , ρ0 ) + �1 

∑ t 
i =1 

ρt + ρt−1 

2 ρ2 
t−1 

+ �2 

∑ t 
i =1 

1 
2 ρt 

, 

(34) 

where �1 is an upper bound of {‖ �i − �i −1 ‖ 2 F 
} , and �2 is an upper bound of {‖ �i ‖ 2 F 

} . Because { �i } is bounded, ‖ �i ‖ 2 F 
and

‖ �i − �i −1 ‖ 2 F ≤ 2 ‖ �i ‖ 2 F + 2 ‖ �i −1 ‖ 2 F are bounded. Thus, the existences of �1 and �2 are guaranteed, e.g., �2 = max {‖ �i ‖ 2 F }
and �1 = 4�2 . Therefore, under the conditions that 

∑ ρt+1 

ρ2 
t 

< ∞ and 

∑ 1 
ρt 

< ∞ , it is clear that 

L (S t+1 , U t+1 , C t+1 , V t+1 , �t , ρt ) = ‖ S t+1 ‖ 1 + ‖ C t+1 ‖ ld + 

ρt 

2 

‖ X − S t+1 − U t+1 C t+1 V 

T 
t+1 + �t /ρt ‖ 

2 
F (35)

is bounded. Then each term on the right hand side of the above equation is bounded, which implies that S t+1 and C t+1 are

bounded. According to the updating rules of V and U in (20), (21) , U 

T U = V T V = I always hold, where I is an identity matrix.

Therefore, U and V are also bounded. Hereby, we have proved that { S t }, { U t }, { C t }, { V t }, and { �t } are bounded. �

Theorem 4. Let { S t , U t , C t , V t , �t } be the sequence generated by Algorithm 1 . Under the assumptions that 
∑ ρt+1 

ρ2 
t 

< ∞ , 
∑ 1 

ρt 
<

∞ , and ρt (C t − C t+1 ) → 0 , sequence of { S t , U t , C t , V t , �t } has at least one accumulation point. For any accumulation point { S ∗,

U 

∗, C ∗, V 

∗, �∗}, { S ∗, U 

∗, C ∗, V 

∗} is a stationary point of optimization problem (10) . 

Proof. Under the conditions that 
∑ ρt+1 

ρ2 
t 

< ∞ and 

∑ 1 
ρt 

< ∞ , by Theorem 3 , we know that { S t , U t , C t , V t , �t } is bounded.

By the Bolzano–Weierstrass theorem, the sequence must have at least one accumulation point, namely, { S ∗, U 

∗, C ∗, V 

∗, �∗}.

Without loss of generality, we assume that { S t , U t , C t , V t , �t } itself converges to { S ∗, U 

∗, C ∗, V 

∗, �∗}. Next, we prove that { S ∗,

U 

∗, C ∗, V 

∗} is a stationary point of the problem (10) . As 

�t+1 = �t + ρt (X − S t+1 − U t+1 C t+1 V 

T 
t+1 ) , 

we have 

X − S t+1 − U t+1 C t+1 V 

T 
t+1 = 

1 

ρt 
(�t+1 − �t ) . 

Because ρt → ∞ and �t is bounded, 

X − S t+1 − U t+1 C t+1 V 

T 
t+1 → 0 , 

i.e., 

X − S ∗ − U 

∗C ∗(V 

∗) T = 0 . 

Besides, based on the updating of V and U , V T t V t = U 

T 
t U t = I always hold. Therefore, 

(V 

∗) T V 

∗ = (U 

∗) T U 

∗ = I. 

Hence, the primal feasibility conditions are satisfied by S ∗, U 

∗, C ∗, and V 

∗. Next, we will show that the stationary conditions

also hold. By the first-order optimality condition of S t , we have 

∇ S ‖ S‖ 1 | S t + ρt−1 (S t + U t C t V 

T 
t − X − �t−1 /ρt−1 ) = ∇ S ‖ S‖ 1 | S t − �t = 0 . 

Let t → ∞ , we get 

∇ S ‖ S‖ 1 | S ∗ − �∗ = 0 . 

By the first-order optimality condition of C , we have 

∇ C ‖ C‖ ld | C t+1 
+ ρt U 

T 
t+1 (S t + U t+1 C t+1 V 

T 
t+1 − X − �t /ρt ) V t+1 

= ∇ C ‖ C‖ ld | C t+1 
+ ρt U 

T 
t+1 (S t − S t+1 ) V t+1 + ρt U 

T 
t+1 (S t+1 + U t+1 C t V 

T 
t+1 − X − �t /ρt ) V t+1 

= ∇ C ‖ C‖ ld | C t+1 
+ ρt U 

T 
t+1 (S t − S t+1 ) V t+1 − U 

T 
t+1 (�t + ρt (X − S t+1 − U t+1 C t+1 V 

T 
t+1 )) V t+1 

= ∇ C ‖ C‖ ld | C t+1 
+ ρt U 

T 
t+1 (S t − S t+1 ) V t+1 − U 

T 
t+1 �t+1 V t+1 = 0 . 
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Table 1 

Benchmarking datasets. 

Data set Data size Used size # of backgrounds 

Escalator Airport 130 × 160 × 3,417 130 × 160 × 3,417 1 

Hall Airport 144 × 176 × 3,584 144 × 176 × 2,389 1 

Bootstrap 120 × 160 × 2,055 120 × 160 × 2,055 1 

Campus 128 × 160 × 1,439 128 × 160 × 1,439 1 

Fountain 128 × 160 × 0,523 128 × 160 × 0,523 1 

Water Surface 128 × 160 × 0,633 128 × 160 × 0,633 1 

Shopping Mall 256 × 320 × 1,286 128 × 160 × 1,286 1 

Curtain 128 × 160 × 2,964 128 × 160 × 2,964 1 

Office 128 × 160 × 2,964 128 × 160 × 2,964 1 

PETS2006 576 × 720 × 2,964 128 × 160 × 2,964 1 

Pedestrian 240 × 360 × 1,099 120 × 180 × 1,099 1 

Highway 240 × 320 × 1,700 120 × 160 × 1,700 1 

Lobby 128 × 160 × 1,546 128 × 160 × 1,546 2 

Camera Parameter 240 × 320 × 5,001 120 × 160 × 2,501 2 

Light Switch-1 120 × 160 × 2,800 120 × 160 × 2,800 2 

Light Switch-2 120 × 160 × 2,715 120 × 160 × 2,715 2 

Time Of Day 128 × 160 × 5,890 128 × 160 × 1,964 2 

For data size, the first two dimensions represent the size of each frame while the third 

represents the number of frames. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Under the assumption that ρt (S t − S t+1 ) → 0 , we have 

ρt U 

T 
t+1 (S t − S t+1 )) V t+1 → 0 . 

Let t → ∞ , then we have 

∇ C ‖ C‖ ld | C ∗ − (U 

∗) T �∗V 

∗ = 0 . 

Now we can see that { S ∗, U 

∗, C ∗, V 

∗, �∗} satisfies the KKT conditions of L ; therefore { S ∗, U 

∗, C ∗, V 

∗} is a stationary point

of the problem (10) . �

6. Experiments 

In this section, we will conduct extensive experiments to empirically evaluate the proposed method. In particular, three

crucial applications are considered, including foreground-background separation in video sequences, shadow removal from

face images, and anomaly detection from pen digits. Due to elegant theory as well as the guaranteed performance of IALM 

1

[8] and linear efficiency of AltProj, 2 these methods are used as a benchmark to illustrate the effectiveness and efficiency of

our algorithm. To improve the efficiency of IALM and AltProj, we make use of the PROPACK package [12] to solve SVDs. We

conduct all experiments on a dual-core Intel Xeon E3-1240 V2 3.40 GHz Linux Server with 8 GB memory. For purpose of

reproduction, we provide our code at https://www.researchgate.net/publication/316 6560 69 _ codes _ icdm2016 . 

6.1. Foreground-background separation 

A video sequence can be decomposed into a background (the low-rank part) and a foreground (the sparse part). The

problem of foreground-background separation is to detect moving objects or interesting activities in a scene and remove

background(s) from a video sequence. To testify the proposed method on this application we use 17 benchmark data sets,

among which 12 contain a single background while 5 have 2 backgrounds. 3 We summarize some key characteristics of

these data sets in Table 1 . It should be noted that the number of backgrounds summarized in Table 1 reveals the underlying

ground true rank of L . Due to a computational acceleration consideration, we perform down-sampling or down-resolution

on some of these data sets, for which the rates can be found in Table 1 . For each data set, we construct a data matrix by

vectorizing and collecting all frame images. In the following, we will consider two cases based on whether the knowledge

of precise r value is available or not. 

6.1.1. Case 1 ( r is known) 

When r is available, we set k = r for F-FFP and AltProj, where the value of r for each data set can be found in Table 1 . For

the parameter settings, we fix ρ = 0 . 0 0 01 and κ = 1 . 5 for IALM for fast convergence and fairly good visual quality, which
1 http://perception.csl.illinois.edu/matrix-rank/sample _ code.html#RPCA . 
2 http://www.personal.psu.edu/nsa10/codes.html . 
3 The datasets used in this subsection can be found at http://perception.i2r.a-star.edu.sg/bk _ model/bk _ index.html 

http://limu.ait.kyushu-u.ac.jp/dataset/en/ 

http://wordpress-jodoin.dmi.usherb.ca/dataset2012/ 

http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm . 

https://www.researchgate.net/publication/316656069_codes_icdm2016
http://perception.csl.illinois.edu/matrix-rank/sample_code.html#RPCA
http://www.personal.psu.edu/nsa10/codes.html
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
http://limu.ait.kyushu-u.ac.jp/dataset/en/
http://wordpress-jodoin.dmi.usherb.ca/dataset2012/
http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm
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Table 2 

Results over different datasets with r known. 

Data Method Rank( L ) ‖ S ‖ 0 /( dn ) ‖ X−L −S‖ F ‖ X‖ F # of Iter. # of SVDs Time 

Shopping 

Mall 

AltProj 1 0.9853 3.91e-5 45 46 45.35 

IALM 328 0.8158 9.37e-4 11 12 123.99 

F-FFP 1 0.9122 7.72e-4 23 23 11.65 

PETS2006 AltProj 1 0.8590 5.20e-4 35 36 44.64 

IALM 293 0.8649 5.63e-4 12 13 144.26 

F-FFP 1 0.8675 5.71e-4 24 24 14.09 

Hall Airport AltProj 1 0.9806 5.16e-5 46 47 113.98 

IALM 556 0.8500 8.15e-4 11 12 408.03 

F-FFP 1 0.9168 5.89e-4 23 23 26.19 

Campus AltProj 1 0.9790 9.50e-5 41 42 54.1 

IALM 488 0.8136 9.30e-4 11 12 242.59 

F-FFP 1 0.9378 6.28e-4 23 23 12.85 

Pedestrian AltProj 1 0.5869 9.32e-4 41 42 37.90 

IALM 35 0.8910 5.69e-4 11 12 36.18 

F-FFP 1 0.6719 6.03e-4 23 23 10.53 

Water 

Surface 

AltProj 1 0.8890 3.97e-4 47 48 27.27 

IALM 224 0.7861 5.32e-4 12 13 51.00 

F-FFP 1 0.8355 9.91e-4 23 23 5.68 

Curtain AltProj 1 0.8280 7.46e-4 40 41 102.41 

IALM 834 0.7398 6.84e-4 12 13 747.36 

F-FFP 1 0.8680 6.31e-4 24 24 27.51 

Fountain AltProj 1 0.9113 2.91e-4 50 51 23.90 

IALM 102 0.8272 4.91e-4 12 13 25.62 

F-FFP 1 0.8854 5.10e-4 24 24 5.00 

Office AltProj 1 0.8018 9.40e-4 51 52 84.43 

IALM 374 0.7582 9.46e-4 11 12 230.53 

F-FFP 1 0.8761 5.42e-4 24 24 19.92 

Highway AltProj 1 0.9331 2.96e-4 37 38 49.65 

IALM 539 0.8175 6.02e-4 12 13 269.10 

F-FFP 1 0.8854 5.75e-4 24 24 14.83 

Bootstrap AltProj 1 0.9747 1.17e-4 44 45 107.15 

IALM 1146 0.8095 6.27e-4 12 13 1182.92 

F-FFP 1 0.9288 7.72e-4 23 23 25.38 

Escalator 

Airport 

AltProj 1 0.9152 2.29e-4 40 41 110.75 

IALM 957 0.7744 7.76e-4 11 12 1,040.91 

F-FFP 1 0.8878 5.68e-4 23 23 30.78 

For IALM and AltProj, (partial) SVDs are for d × n matrices. For F-FFP, SVDs are for n × k matrices, which 

are computationally far less expensive than those required by IALM and AltProj. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

remains the same for F-FFP for fair comparison. For IALM, we use the theoretically optimal value of the balance parameter,

which is provided in the original paper [8] . For AltProj, the default parameters are used, where the precise value of r is used

as input. All algorithms are terminated when the condition of 
‖ X−L −S‖ F ‖ X‖ F ≤ 10 −3 is satisfied or a maximum number of 200

iterations is reached. Unless specified, the parameter settings remain the same throughout this paper. 

We perform all algorithms on data sets in Table 1 and report the numerical results in Tables 2 and 3 . It is observed

that, in general, IALM obtains more sparse S , but fails to recover L with a desired low rank. Meanwhile, both F-FFP and

AltProj recover L properly with the true rank. Moreover, a general observation by comparing AltProj and F-FFP is that the

later generates more sparse S than the former. In terms of the fitting error, it is observed that all methods have competitive

performance. However, it should be noted that the F-FFP needs the shortest time and thus the fitting error can be further

reduced if comparable time to other methods or more iterations are allowed. It is notable that F-FFP needs the least amount

of time on all these data sets. Roughly, F-FFP is 4 times faster than AltProj and more than 10 times faster than IALM. To

better illustrate the effectiveness of the proposed method, we show some visual results in the first four columns in Figs. 2–4 .

It is observed that the backgrounds recovered by IALM still have some residues from the moving foregrounds; for example,

some residues of cars in the top area of the highway, people standing at the top area of the escalator, and people sitting on

the chair are clearly perceived in these figures. These observations explain why L produced by IALM has high ranks. As for

AltProj and F-FFP, their results are visually comparable, where they can well separate clean backgrounds from the moving

foregrounds. 

6.1.2. Case 2 ( r is unknown) 

When r is unavailable, we may specify a proper k as an upper bound of r based on domain knowledge. In this test,

we set k = 5 throughout this subsection. In this paper, we provide an empirical approach to estimate a proper k , which

can be found in remark of this subsection. Since we do not need to specify the value of k for IALM, the performance of

IALM remains the same as in Section 6.1.1 . For U-FFP, λ is chosen from a set of values {10 0, 20 0, 30 0, 40 0, 50 0}. We show

the numerical as well as some visual results in Table 4 and the last two columns of Figs. 2 –4 , respectively. It is observed
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Table 3 

Results over different datasets with r known. 

Data Method Rank( L ) ‖ S ‖ 0 /( dn ) ‖ X−L −S‖ F ‖ X‖ F # of Iter. # of SVDs Time 

Lobby AltProj 2 0.9243 1.88e-4 39 41 47.32 

IALM 223 0.8346 6.19e-4 12 13 152.54 

F-FFP 2 0.8524 6.53e-4 24 24 15.20 

Light 

Switch-1 

AltProj 2 0.9600 1.12e-4 55 57 121.27 

IALM 499 0.6737 9.99e-4 11 12 359.40 

F-FFP 2 0.8829 8.10e-4 23 23 23.81 

Light 

Switch-2 

AltProj 2 0.9050 2.24e-4 47 49 87.35 

IALM 591 0.7921 7.93e-4 12 13 613.98 

F-FFP 2 0.8324 7.71e-4 24 24 24.12 

Camera 

Parameter 

AltProj 2 0.8806 5.34e-4 47 49 84.99 

IALM 607 0.7750 6.86e-4 12 13 433.47 

F-FFP 2 0.8687 6.26e-4 24 24 22.25 

Time Of Day AltProj 2 0.8646 4.72e-4 44 46 61.63 

IALM 351 0.6990 6.12e-4 13 14 265.87 

F-FFP 2 0.8441 6.82e-4 25 25 18.49 

Fig. 2. Foreground-background separation in the Highway video. The top left is the original frame and the rest are extracted background (top) and fore- 

ground (bottom). 

Fig. 3. Foreground-background separation in the Escalator Airport video. The top left is the original frame and the rest are extracted background (top) and 

foreground (bottom). 

 

 

 

 

 

 

 

 

 

 

 

that U-FFP recovers L with the true rank, whereas AltProj fails. Besides, the time cost of U-FFP increases slightly by less

than 1 second on most of the datasets while AltProj needs about another 10–20 s. Visually, it is seen that AltProj fails to

separate the backgrounds from the foregrounds. In the backgrounds, we can still observe the residues of the moving objects.

For U-FFP, we observe quite comparable visual results to F-FFP. These observations illustrate the enhanced efficiency of the

proposed method as well as alleviated dependence on the knowledge of r . 

Remark. In this paper, we will provide a simple yet effective way to estimate a proper k in the following. It is natural that

low-rank matrices have a small number of dominant singular values. Based on this observation, it is natural to set k as k̄

if the top k̄ largest singular values are significantly larger than the rest ones. To illustrate this, we show some examples in

Fig. 5 . It is evident that singular values of Airport and Lobby data sets significantly decrease from the second and third ones,

respectively. This suggests possible upper bounds for Airport and Lobby data sets to be 1 and 2, respectively. It should be

noted that the singular values can be computed in a greedy way, i.e., we calculate the largest one among the unknown ones

until k̄ appears. This approach only requires O (dn ̄k ) = O (dnk ) complexity, implying that it is scalable to estimate a proper r
in real world applications. 
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Fig. 4. Foreground-background separation in the Light Switch-2 video. The top and bottom two panels correspond to two frames, respectively. For each 

frame, the top left is the original image while the rest are the extracted background (top) and foreground (bottom), respectively. 

Table 4 

Results over datasets with r unknown. 

Data Method Rank( L ) ‖ S ‖ 0 /( dn ) ‖ X−L −S‖ F ‖ X‖ F # of Iter. # of SVDs Time 

Shopping Mall AltProj 5 0.9611 9.82e-5 41 46 63.34 

U-FFP 1 0.9120 7.80e-4 23 23 + 23 12.14 

PETS2006 AltProj 5 0.8543 6.15e-4 39 43 63.33 

U-FFP 1 0.8681 5.70e-4 24 24 + 24 14.79 

Hall Airport AltProj 5 0.8960 5.12e-5 45 50 130.59 

U-FFP 1 0.9168 5.91e-4 23 23 + 23 27.24 

Campus AltProj 5 0.9482 3.18e-5 46 51 92.90 

U-FFP 1 0.9376 6.29e-4 23 23 + 23 14.02 

Pedestrian AltProj 5 0.6202 6.37e-4 44 49 58.10 

U-FFP 1 0.6740 6.05e-4 23 23 + 23 10.92 

Water Surface AltProj 5 0.9090 2.38e-4 46 50 33.78 

U-FFP 1 0.9368 9.89e-4 23 23 + 23 6.15 

Curtain AltProj 5 0.8079 8.82e-4 36 39 101.79 

U-FFP 1 0.8684 6.30e-4 24 24 + 24 29.11 

Fountain AltProj 5 0.7435 7.55e-4 48 52 32.24 

U-FFP 1 0.8873 5.29e-4 24 24 + 24 5.26 

Office AltProj 5 0.7159 8.61e-4 47 52 98.54 

U-FFP 1 0.8764 5.41e-4 24 24 + 24 21.15 

Highway AltProj 5 0.9007 3.66e-4 43 48 75.60 

U-FFP 1 0.8862 5.75e-4 24 24 + 24 15.39 

Bootstrap AltProj 5 0.9875 3.02e-4 47 52 169.06 

U-FFP 1 0.9298 7.67e-4 23 23 + 23 26.19 

Escalator Airport AltProj 5 0.8474 8.43e-4 43 48 162.49 

U-FFP 1 0.8876 5.70e-4 23 23 + 23 31.95 

Lobby AltProj 5 0.9176 1.71e-4 40 44 61.50 

U-FFP 2 0.9197 6.24e-4 25 25 + 25 15.85 

Light Switch-1 AltProj 5 0.8474 4.29e-4 43 47 105.24 

U-FFP 2 0.9172 6.37e-4 24 24 + 24 25.01 

Light Switch-2 AltProj 5 0.8507 4.29e-4 37 41 80.37 

U-FFP 2 0.8324 7.75e-4 24 24 + 24 24.70 

Camera Parameter AltProj 5 0.7311 8.34e-4 50 55 147.28 

U-FFP 2 0.8521 7.09e-4 24 24 + 24 22.67 

Time Of Day AltProj 5 0.8651 4.61e-4 46 51 73.35 

U-FFP 2 0.8880 8.05e-4 25 25 + 25 18.35 

For AltProj, (partial) SVDs are performed on d × n matrices. For U-FFP, SVDs are for both d × k and n × k ma- 

trices, which are computationally far less expensive than those required by AltProj. 
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Fig. 5. Plots of the largest 10 singular values of Airport and Lobby data sets. 

Fig. 6. Shadow removal results for subjects 1 and 2 from EYaleB data. For each of the two parts, the top left is the original image and the rest are recovered 

clean images (top) and shadows (bottom) by (1) IALM, (2) AltProj, and (3) F-FFP, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2. Shadow removal from face images 

Face recognition is an important topic in pattern recognition community [33–35] ; however, face images taken under var-

ious lighting conditions may introduce heavy shadows into face images, which makes it challenging to learn patterns [36] .

Hence, to improve the learning capability on face image data and improve recognition accuracy, it is crucial to handle shad-

ows, peculiarities and saturations on face images. Face images can be naturally separated into a low-rank part and a sparse

part: Clean images reside in a low-rank subspace while shadows correspond to sparse components. Due to such natures of

images, RPCA has been shown to successfully address such a challenging task as shadow removal. For this problem, we fol-

low [8] and use the Extended Yale B (EYaleB) data set [37] . Without loss of generality, we choose the first two persons out

of 38 individuals from this data set and treat each person as a subject. For each subject, there are 64 heavily corrupted face

images taken under varying lighting conditions. Each image has a size of 192 × 168 pixels and we vectorize and record it as

a column in a 32, 256 × 64 data matrix. Since each data matrix collects face images from a single person, it is reasonable to

assume these images reside in the same rank-1 subspace and thus we set the underlying true rank of the data matrix to be

r = 1 . 

Similar to the previous subsection, we consider two cases in this test. First, we consider the case where r is known. We

follow the strategy in [8] and apply IALM, AltProj, and F-FFP to each subject. We show the quantitative and visual results

in Table 5 and Fig. 6 , respectively. From Fig. 6 , we can observe that AltProj and F-FFP can successfully remove shadows and

recover clean face images while IALM fails in this task. It is seen that although the majority of shadows are removed by
Table 5 

Recovery results of face data with k = 1 . 

Data Method Rank( Z ) ‖ S ‖ 0 /( dn ) ‖ X−Z−S‖ F ‖ X‖ F # of Iter. # of SVDs Time 

Subject 1 AltProj 1 0.9553 8.18e-4 50 51 4.62 

IALM 32 0.7745 6.28e-4 25 26 2.43 

F-FFP 1 0.9655 8.86e-4 36 36 1.37 

Subject 2 AltProj 1 0.9755 2.34e-4 49 50 5.00 

IALM 31 0.7656 6.47e-4 25 26 2.66 

F-FFP 1 0.9492 9.48e-4 36 36 1.37 
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Fig. 7. Shadow removal results for subjects 1 and 2 from EYaleB data. The top panel are the recovered clean images and the bottom panel are the shadows 

by (1) AltProj ( k = 5) and (2) U-FFP, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IALM, some still remain. Quantitatively, we can see that both AltProj and F-FFP have the exact rank recovery, where the

recovered low-rank part has rank 1, while IALM recovers the low-rank part with a higher rank. It is notable that though

F-FFP has comparable performance to AltProj, the former is about 4 times faster than the latter. These observations have

verified the effectiveness of F-FFP for face shadow removal. 

Next, we consider the case where r is unknown. In a way similar to the setting in foreground-background separation,

we set k = 5 . We apply AltProj and U-FFP to each subject and report the quantitative as well as visual results in Table 6

and Fig. 7 , respectively. From Table 6 , it is observed that visually U-FFP is comparable to F-FFP while AltProj appears unable

to remove shadows neatly. Quantitatively, as shown in Table 6 , AltProj generates an L that has a higher rank while U-FFP

produces an L that has the true rank. These observations imply that U-FFP is allowed to have more flexibility in choosing k .

Besides, U-FFP is the fastest among all these methods, suggesting its potential in real world application. 

6.3. Face clustering 

To further exploit the effectiveness of the proposed method on face shadow removal, we expand the experiment to face

clustering. In this test, we use the EYaleB data. We follow the strategy in [38] to apply RPCA as a pre-processing step to

obtain the low-rank part of the data on which we perform standard clustering methods. Here, without loss of generality,

we follow the previous subsection and set k = 5 . It is natural to believe that better clustering performance implies more

effective removal of the shadow from face images. To better investigate the clustering performance, in clustering stage, we

follow the strategy in [20,38,39] and divide the 38 individuals into 4 groups, containing individuals 1–10, 11–20, 21–30, and

31–38, respectively. Then within each group, we consider all possible combinations of n persons, where n takes value within

{2, 3, 5, 8, 10}. For each n value, all combinations across the groups are collected to obtain a collection of face images, which

contain all possible subsets of n persons. Finally, we apply clustering methods, including K-means, spectral clustering, and

hierarchical clustering, to all component subsets within each collection of face images and we record the mean and median

results for each method. For K-means, we use a fast implementation [40] and repeat it 100 times for the smallest objective.

For spectral clustering, we use RBF kernel [41] with radius parameter ranges in the set {0.001, 0.01, 0.1, 1, 10, 100, 10 0 0}.

For hierarchical clustering, we use the complete-linkage approach. For the evaluation metric, we use clustering accuracy,

normalized mutual information, and purity, whose detailed descriptions can be found in [42] . In Tables 7–9 , we report the

best mean and median performance with respect to each collection. It is observed that these clustering methods achieve the

best performance on data recovered by the proposed method throughout this test, which implies that the proposed method

can more effectively remove the shadow from face images. 

6.4. Anomaly detection 

Given a number of images from one subject, they form a low-dimensional subspace. Any image that significantly differs

from the majority of the images can be regarded as an outlier; besides, fewer images from another subject can be regarded

as outliers. Anomaly detection is to identify such kinds of outliers. USPS dataset contains 9298 images of hand-written

digits of size 16 × 16. Following [13,21] , among these images, we select the first 190 images of ‘1’s and the last 10 of ‘7’s

and construct a data matrix of size 256 × 200 by regarding each vectorized image as a column. Since there are much more

‘1’s than ‘7’s, we treat the ‘1’s as dominant while the ‘7’s as outliers. It is straightforward to point out that the true rank
Table 6 

Recovery results of face data with k = 5 . 

Data Method Rank( Z ) ‖ S ‖ 0 /( dn ) ‖ X−Z−S‖ F ‖ X‖ F # of Iter. # of SVDs Time 

Subject 1 AltProj 5 0.9309 3.93e-4 51 55 6.08 

U-FFP 5 0.9632 9.01e-4 36 36 + 36 1.44 

Subject 2 AltProj 5 0.8903 6.40e-4 54 58 7.92 

U-FFP 1 0.9645 5.85e-4 37 37 + 37 1.53 
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Table 7 

Comparison of clustering in accuracy. 

No. of Subjects 2 Subjects 3 Subjects 5 Subjects 8 Subjects 10 Subjects 

Algorithm Average Median Average Median Average Median Average Median Average Median 

IALM + K-means 0.5152 0.5156 0.3597 0.3594 0.2483 0.2375 0.1956 0.1953 0.1698 0.1672 

AltProj 0.5191 0.5156 0.3655 0.3594 0.2572 0.2437 0.2026 0.2031 0.1859 0.1953 

U-FFP 0.9989 1.0000 0.9990 1.0000 0.9975 1.0000 0.9829 1.0000 0.9995 1.0000 

IALM + Spectral 0.5151 0.5156 0.3616 0.3594 0.2303 0.2281 0.1546 0.1543 0.1323 0.1328 

AltProj 0.5204 0.5156 0.3656 0.3646 0.2331 0.2344 0.1565 0.1563 0.1318 0.1313 

U-FFP 0.9929 1.0000 0.9384 1.0000 0.9907 1.0000 0.9913 1.0000 0.9661 1.0000 

IALM + Hierarichical 0.5210 0.5078 0.3613 0.3438 0.2349 0.2094 0.1669 0.1367 0.1432 0.1109 

AltProj 0.6015 0.5078 0.4445 0.3438 0.2945 0.2125 0.2060 0.2539 0.1740 0.2062 

U-FFP 0.9335 1.0000 0.9426 1.0000 0.9520 1.0000 0.9645 1.0000 0.9661 1.0000 

Table 8 

Comparison of clustering in normalized mutual information. 

No. of Subjects 2 Subjects 3 Subjects 5 Subjects 8 Subjects 10 Subjects 

Algorithm Average Median Average Median Average Median Average Median Average Median 

IALM + K-means 0.0011 0.0007 0.0037 0.0023 0.0319 0.0108 0.0734 0.0765 0.0754 0.0800 

AltProj 0.0018 0.0007 0.0053 0.0031 0.0396 0.0131 0.0724 0.0725 0.0840 0.0998 

U-FFP 0.9921 1.0000 0.9954 1.0000 0.9962 1.0000 0.9883 1.0000 0.9988 1.0000 

IALM + Spectral 0.0011 0.0007 0.0039 0.0029 0.0089 0.0060 0.0134 0.0107 0.0200 0.0173 

AltProj 0.0020 0.0007 0.0049 0.0038 0.0074 0.0060 0.0125 0.0100 0.0158 0.0160 

U-FFP 0.9803 1.0000 0.9213 1.0000 0.9908 1.0000 0.9927 1.0000 0.9799 1.0000 

IALM + Hierarichical 0.0326 0.0079 0.0422 0.0105 0.0516 0.0126 0.0605 0.0157 0.0617 0.0157 

AltProj 0.1966 0.0079 0.1866 0.0105 0.1455 0.0126 0.1184 0.1885 0.1059 0.1517 

U-FFP 0.8660 1.0000 0.9275 1.0000 0.9582 1.0000 0.9765 1.0000 0.9799 1.0000 

Table 9 

Comparison of clustering in purity. 

No. of Subjects 2 Subjects 3 Subjects 5 Subjects 8 Subjects 10 Subjects 

Algorithm Average Median Average Median Average Median Average Median Average Median 

IALM + K-means 0.5152 0.5156 0.3611 0.3594 0.2545 0.2453 0.2107 0.2129 0.1844 0.1812 

AltProj 0.5191 0.5156 0.3676 0.3646 0.2617 0.2500 0.2121 0.2109 0.2031 0.2125 

U-FFP 0.9989 1.0000 0.9990 1.0000 0.9976 1.0000 0.9832 1.0000 0.9995 1.0000 

IALM + Spectral 0.5151 0.5156 0.3641 0.3594 0.2363 0.2344 0.1612 0.1621 0.1385 0.1391 

AltProj 0.5204 0.5156 0.3678 0.3646 0.2382 0.2375 0.1626 0.1641 0.1365 0.1359 

U-FFP 0.9929 1.0000 0.9392 1.0000 0.9910 1.0000 0.9904 1.0000 0.9667 1.0000 

IALM + Hierarichical 0.5210 0.5078 0.3629 0.3438 0.2379 0.2125 0.1711 0.1406 0.1479 0.1156 

AltProj 0.6015 0.5078 0.4461 0.3438 0.2982 0.2125 0.2108 0.2578 0.1786 0.2109 

U-FFP 0.9335 1.0000 0.9428 1.0000 0.9526 1.0000 0.9651 1.0000 0.9667 1.0000 

 

 

 

 

 

of L should be 1. Some examples of these selected images are shown in Fig. 8 . It is observed that besides the ‘7’s, some

‘1’s are quite different from the majority. Therefore, anomaly detection, in this case, is not only to detect the ‘7’s, but also

the anomaly of ‘1’s. After applying F-FFP, the columns in S that correspond to anomalies contain relatively larger values. We

use the � 2 norm to measure the values in each column of S and show the values in Fig. 9 . The highest bars suggests the

corresponding examples to be outliers. For ease of visualization, we vanish the values that are smaller than 5 in Fig. 9 . We
Fig. 8. Selected ‘1’s and ‘7’s from USPS dataset. 
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Fig. 9. � 2 -norms of each row of S . 

Fig. 10. Written ‘1’s and outliers identified by F-FFP. 

Fig. 11. Plots of time cost of F-FFP and U-FFP as functions of data size (left column) and dimension (right column), respectively. 

 

 

 

 

show the corresponding digits in Fig. 10 , which include all ‘7’s and additional ‘1’s. It is seen that these digits starkly differ

from others, which is reasonable to regard them as outliers. This implies the efficiency of the proposed method. 

6.5. Scalability 

To numerically illustrate the scalability of F-FFP and U-FFP, we test how the time cost increases with values of n and

d , respectively. To test the effect of n , we uniformly sample a partition of the frames with the sampling rate in {0.1, 0.2,…,

1.0}. To test the relationship of time with d , we down-sample pixels of each frame with different rates varying over {0.1 2 ,
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Fig. 12. Plots of time cost of F-FFP and U-FFP versus k , respectively. 

 

 

 

 

 

0.2 2 ,…, 1.0 2 }. For both F-FFP and U-FFP, we temporarily ignore other terminating conditions and terminate them within 50

iterations. 10 runs are repeated for each case and the average time cost is reported in Fig. 11 . It is observed that the time

cost increases essentially linearly with n for both F-FFP and U-FFP. We show the plots with both x - and y -coordinates scaled

to their square roots. The line plots essentially reveal the scalability of the algorithms in d . 

Besides, we also test how the time cost increases as k does. For this test, we use the overall datasets and record the time

cost with k ∈ {2, 3, 4,…, 10}. We report these results in Fig. 12 . It is observed that the time cost increases only slightly when

k increases from 2 to 10, implying low cost for selecting larger k . 
Fig. 13. Examples of convergence on 10 data sets. 
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6.6. Convergence rate 

In previous sections, we have theoretically analyzed the convergence of our algorithm. Besides, the complexity of our al-

gorithm is O ( dnk ) per iteration. However, it is highly non-trivial to provide theoretical results on the convergence rate. Thus,

the overall theoretical complexity is out of the scope of this paper. In this test, we will provide some empirical results on the

coverall convergence complexity. For a clearer illustration yet without loss of generality, in this test we fix the parameters

ρ = 1 and κ = 1 . 1 for FFP. We set the solution of S ∗ and U 

∗C ∗( V 

∗) T to be S t and U t C t V 
T 

t , respectively, when 

‖ X−S t −U t C t V 
T 
t ‖ F ‖ X‖ F ≤ ε

is satisfied, where ε = 10 −8 is the terminating tolerance. Results in this test can be found in Fig. 13 . Here, we first plot the

sequence of { ‖ S t −S ∗‖ F ‖ S ∗‖ F } , which clearly shows the convergence of { S t }. We further show the plot of { ‖ S t+1 −S ∗‖ F ‖ S t −S ∗‖ F } to show the

convergence rate. It is observed that 
‖ S t+1 −S ∗‖ F ‖ S t −S ∗‖ F < 1 and tends to be decreasing, implying a superlinear convergence rate.

For U , C , and V , we show the results of UCV 

T for ease of illustration, where similar observations to S are found. Thus, it

is convincing that the proposed method has an overall complexity of O (dnk 1 ε ) in real world applications, where ε is the

terminating tolerance or recovery accuracy. 

7. Conclusion 

In this paper, we propose a new factorization-based RPCA model, which is equivalent to the traditional convex RPCA

under some mild conditions. We develop an ALM-type optimization strategy, which provably converges to a stationary point.

The proposed optimization algorithms have scalability in both data dimension and sample size, which is crucial for large-

scale data analysis. Extensive experiments confirm the effectiveness and efficiency of the proposed model and algorithms

both quantitatively and qualitatively. 
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